Voltage-dependent chloride conductance of the squid axon membrane and its blockade by some disulfonic stilbene derivatives
نویسنده
چکیده
When giant axons of squid, Sepioteuthis, were bathed in a 100 mM Ca-salt solution containing tetrodotoxin (TTX) and internally perfused with a solution of 100 mM tetraethylammonium-salt (TEA-salt) or tetramethylammonium-salt (TMA-salt), the membrane potential was found to become sensitive to anions, especially Cl-. Membrane currents recorded from those axons showed practically no time-dependent properties, but they had a strong voltage-dependent characteristic, i.e., outward rectification. Cl- had a strong effect upon the voltage-dependent membrane currents. The nonlinear property of the currents was almost completely suppressed by some disulfonic stilbene derivatives applied intracellularly, such as 4-acetoamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and as 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), which are blockers of chloride transport. On the basis of these experimental results, it is concluded that a voltage-dependent chloride-permeable channel exists in the squid axon membrane. The chloride permeability (PCl) is a function of voltage, and its value at the resting membrane (Em = -60 mV) is calculated, using the Goldman-Hodgkin-Katz equation, to be 3.0 X 10(-7) cm/s.
منابع مشابه
Disulfonic Stilbene Derivatives
A BS T R A C T When giant axons of squid, Sepioteuthis, were bathed in a 100 mM Ca-salt solution containing tetrodotoxin (TTX) and internally perfused with a solution of 100 mM tetraethylammonium-salt (TEA-salt) or tetramethylammonium-salt (TMA-salt), the membrane potential was found to become sensitive to anions, especially Cl-. Membrane currents recorded from those axons showed practically no...
متن کاملModification of K conductance of the squid axon membrane by SITS
The effects of 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) on the K conductance, gK, were studied in internally perfused giant axons from squid, Doryteuthis. SITS at 3-200 microM was applied intracellularly by adding the reagent to the internal perfusion fluid. Three remarkable changes in gK were noted: there was a slowing of the opening and closing rates of the K channel in...
متن کاملDemonstration of Two Stable Potential States in the Squid Giant Axon under Tetraethylammonium Chloride
1. Intracellular injection of tetraethylammonium chloride (TEA) into a giant axon of the squid prolongs the duration of the action potential without changing the resting potential (Fig. 3). The prolongation is sometimes 100-fold or more. 2. The action potential of a giant axon treated with TEA has an initial peak followed by a plateau (Fig. 3). The membrane resistance during the plateau is prac...
متن کاملMembrane conductance and current-voltage relation in the squid axon under voltage-clamp.
,4BSTRACT TASAKI, I. AND C. S. SPYROPOULOS. Membrane conductance and currentvoltage relation in the squid axon under ‘voltage-clamp.’ &L-The conductance of the squid axon membrane under ‘voltage-clamp’ was measured by superposing a sinusoidal wave upon rectangular clamping voltage pulses. It was possible to determine the time course of the emf of the membrane under ‘voltage-clamp’ on a single p...
متن کاملBatrachotoxin-modified sodium channels from squid optic nerve in planar bilayers. Ion conduction and gating properties
Squid optic nerve sodium channels were characterized in planar bilayers in the presence of batrachotoxin (BTX). The channel exhibits a conductance of 20 pS in symmetrical 200 mM NaCl and behaves as a sodium electrode. The single-channel conductance saturates with increasing the concentration of sodium and the channel conductance vs. sodium concentration relation is well described by a simple re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 85 شماره
صفحات -
تاریخ انتشار 1985